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Monte Carlo Simulations of “Compensation” in a Calorimeter 

W. Wu, A. Beretvas, K. Denisenko, D. Green, J.‘Marraffino, and A. Para 

Fermi National Accelerator Laboratory, Batavia, Illinois, 60510. 

Abstract 

We have simulated the response of the SDC calorimeter for the decay Z’ -+ jet + jet 

(Mz, = 10 TeV). The purpose of the present study is to determine the mass and energy 

resolutions for the Z’. We consider the two cases when the hadron (HAD) calorimeter is 

made of lead/scintillator or iron/scintillator. We find that mass resolution is essentially the 

same in both cases and that the energy resolution for lead is only slightly better then for 

iron, 1.9% versus 2.2%. 

Introduction 

Recently the SDC collaboration has decided to build a scintillating Tile/Fiber calorime- 

ter I. The SDC calorimeter will contain a 22 radiation length (X0) electromagnetic (EM) 

calorimeter. The EM calorimeter will consists of 36 pairs of plates. Each pair is made 

up of 2.5 mm thick scintillator followed by 3.175 mm thick lead. This calorimeter has 

a total thickness of 0.7 X0 (nuclear interaction lengths). Two options (lead/scintillator, 

iron/scintillator) are considered for the hadron (HAD) al c orimeter. For both options the 

total thickness is 8.3 X0. We will evaluate these two options in terms of jet physics. 

Physics Motivation and Outline 

We have previously studied “Jet Energy Resolution of the SDC Detector” ‘. The 
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present project gave us an opportunity to extend our previous study. At the SSC one 

will want to study the highest possible energy jet. In our study “Depth requirements in 

SSC Calorimeters” 3 we concluded that this was roughly a 10 TeV dijet. We have ex- 

tended the parametrization given in our Monte Carlo program SSCSIM “. We now have 

parametrizations in both the longitudinal and transverse directions for both “photons and 

hadrons”. We have modified our LEG0 plot 60 that now the energy is obtained for both 

a.n EM and HAD LEG0 plots. The energy smearing routine has bee4 extended to include 

compensation. 

The Z’ events were produced as dijets using ISAJET version 6.36. We cluster energy in 

a cone of radius 0.6 in eta-phi space. The cone is centered on the direction of the parent 

parton as given by ISAJET. The jet 4-momentum vector was calculated by summing all 

calorimetric cells within the cone, treating all cells as massless particles. 

Photon Shower Longitudinal Parametrizations 

A common form for the parametrization of longitudinal EM showers is ‘: 

dE = kt’-‘e-b’dt (1) 

where t is the depth inside the calorimeter expressed in units of radiation lengths t = z/X0, 

and a, b are energy dependent constants. The scale factor k is obtained by integrating the 

above equation (k = s). The shower maximum occum at t,,, = w. The Particle 

Da.ta Group ‘, using an EGS4 simulation, gives the following expression: 

t - l.O(lny t C) max - (2) 

where the scaling variable y = 2, and the constant C = 0.5 (for photon induced cascades). 

2 



Ea is the energy of the incident photon. The critical energy is when the loss of energy by 

ionization is equal to the loss by radiative processes. To calculate the critical energy we use 

the formula 6: 

E, = 
800 MeV 

2+1.2 (3) 

To find the energy deposited in the EM calorimeter we must find where the shower starts 

(t.) with respect to the front face at t = 0 and then integrate the energy deposited up to 

the end (t.) of the EM calorimeter: 

E&Photon) = 
‘*-‘* ta-~e-btdt 

(4) 

The resulting expression for the energy deposited by a photon induced shower in the EM 

calorimeter (t7 = t. -t.)) is: 

EEM(photon) = Eor(a’ btT) 
r(a) 

(5) 

The energy not deposited in the EM calorimeter (leakage) is deposited in the hadron 

calorimeter. The expression for leakage energy reduces to a very simple expression when 

we recall the definition of the incomplete Gamma function: 

J 

m 

7(% 4 = va-%“dv 
“0 

EHAD(photon) = Edr(a) - r(% btT)l = Eda, bt,) 
w4 w 

(6) 

The simulation of the start of the shower is trivial because the probability distribution 

function is the exponential function: 

dN --t. 
dt,=e (8) 
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Transverse Photon Shower Parametrization 

The transverse shower parametrization is of the form ‘: 

dE = Kr 
[e-e + g&l 

dr rf + gri 

where g = 0.0052, rl(cm) = 0.076 + O.O23t, and rz(cm) = 0.052 t 0.089t. 

Longitudinal Hadron Shower Parametrization 

The hadron shower is parametrized according to Ref. [5]: 

dE = qa) 3{fo[(bt)‘-‘e-bt d(bt)] + (1 - fo)[(dD)“-‘e-dDd(dD)]} 

(9) 

where f0 is the fraction of the showers energy that goes into electromagnetic energy (no), 

and D = -& is the depth in units of nuclear interaction lengths. The constants are: 

a = 0.62 + 0.321nEo, b = 0.22, d = 0:91 - 0.0241nEo. (11) 

Although the fraction of energy in x0 goes up as a function of the energy in the shower, 

we use the value 0.46 given in Ref. [5]. W e a am need to consider the fluctuations in the g 

interaction point: 

where D, is the distance from the front face to the start of the shower in interaction lengths. 

Again, this is an exponential distribution and thus easy to simulate. We consider two cases, 

the first of which is when the hadron interacts in the EM calorimeter: 

EEM(hadron) = EoWY=>btJ + Cl- foNa>d”r)l 
r(a) 

where D, = D. - D. and t, = t. t.. The energy not deposited in the EM section will be 

deposited in the hadron calorimeter (except for leakage). In addition, in most cases, the 
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response of the hadron calorimeter is not the same for hadrons as for photons(t+ctrons). 

We refer to this difference as non-compensation and use the notation ~/e, If we neglect 

leakage then: 

EHAD(hadron) = Eo[fo(l - rG+Jy + (1 -fo)(l - ‘(=g$;. r(a) (14) 

To model the a/e ratio we we an ansatz suggested by D. Groom ‘. The second case occurs 

when the interaction occurs inside the hadron calorimeter. In this case, clearly no energy 

is deposited in the EM calorimeter. 

EEM(hadron) = 0 (15) 

EHAD(hadron) = Eo[fo t (1 - fo)( l- (1’3) 

where D, = D., - D., and De, is equal to the total depth in nuclear interaction lengths of 

the complete calorimeter (9 X0). 

Transverse Hadron Shower Parametrization 

We use a parametrization given by F. Binon et al. ‘. 

y = ale -JL$ + .,,-& 
(17) 

where a1 = 0.7, a2 = 0.3, bl = 2. cm, and bl = 7. cm. 

Response of Ideal Calorimeter 

Our results are based on statistics of 1000 events. Our cell size is 0.05 by 0.05 in eta-phi 

space for both the HAD and EM calorimeters. Figure 1 shows the ratio of the reconstructed 

mass to the generated mass for an ideal (i.e. no energy resolution) calorimeter of a. realistic 

cell siz?. We have also set the ?r/e ratio to 1. To obtain the mean we use a Gaussian fit in a 
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region that contains 75% of the events, a procedure used in our earlier study’. We see that 

the reconstructed rnas~ is 97% of the originrd mass and the mass resolution is 2.2%. Figure 

2 shows the fractional energy error 
E(me.aured)j.t-E(remnatruded)j.l The distribution has a 

E meomred j.r 

sigma, of 1.0%. 

Energy Smearing 

In our analysis the energy resolution of the detector is approximated by a “stochastic” 

term (a) due to statistical fluctuations in the shower/detection process and a “constant” 

term (b) due to non-uniformities in the detector 

dE=a&$bE. (18) 

The constants a and b will be specified for 4 cases. The first case is for a photon shower 

in an EM calorimeter. For our geometry an EGS4 simulation10 gives a stochastic term of 

13%. These studies also indicate that one can obtain an acceptable light yield and also a 

uniformity of tile construction consistent with a 1% constant term. The second case is for 

a photon shower in the HAD calorimeter. The absorber is 8 times thicker in the hadron 

calorimeter (1 inch) than in the EM calorimeter and the scintillator has the same thickness 

(2.5 mm) as in the EM. Therefore the stochastic term will be roughly J8 times larger (37%). 

We estimate that the constant term will be 2% or less. The next case is a hadron entering 

the EM calorimeter. We consider this case to be identical to the first case. Clearly not all 

ha.drons interact (0.7 X0) and only 46% of the energy will go into an electromagnetic shower. 

The fourth case is that of a hadron entering the HAD calorimeter. We have assumed the 

“stochastic” term is 70% and the constant term is 2%. The “Hanging File” group will 

soon have experimental data pertaining to these 4 cas&. We will then incorporate the 
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measured resolution into our analysis program. 

response including Smearing 

Figure 3 shows the ratio of reconstructed mass to the generated mass with smearing. 

The reconstructed mass is 97% of the original mass and the mass resolution is 2.5%. Figure 

4 shows that the fractional energy resolution has now been degraded to 1.9%. 

5 Parametrization 

In order to specify the actual response of a calorimeter of a given material, we need to 

indiwte how the deposited energy is modified and also how the smearing is modified. As 

indicated earlier, the deposited energy for hadrons is specified by the ratio of ~/e. We have 

used the Groom formula* to do this: 

; = [l.- 1 1. - 2 1 ( E,;La)-o.‘6] (19) 

where e. and Q, are the calorimeter efficiencies for detecting low-energy electronic and 

hadronic energy deposition. The nominal energy is taken as 1 GeV. This one parameter 

fit provides a good description of test beam data8. In our simulation we use the values of 

2 = I (1.25) for lead (iron). The results for an iron hadron calorimeter, with no smearing 

are that the reconstructed mass is now 92% of the generated mass, has a mass resolution of 

2.5%, and an energy resolution of 2.4%. We have taken the fraction of energy that goes into 

electromagnetic energy (TO) as 46% but in reality this number fluctuates. The fluctuations 

depend crudely on the squxe root of the number of 11’ produced in the first interaction; 

An additional constant term needs to be added in quadrature to the smearing: 

dE =I z - 11 Edfo =I z - 11 E(0.2) (21) 
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Our estimate of 0.2 is a compromise between that of the experts, Groom (0.14) and Wigmans 

(0.23). The results for an iron calorimeter with smearing are that the reconstructed mass is 

now 91% of the generated mass, and has amass resolution of 3.0% with an energy resolution 

of 2.8%. These results are shown in Figures 5 and 6. 

Corrections to Mass and Energy Resolutions for Iron 

We have investigat,ed a few methods for correcting (calibrating) the hadron response of 

an iron calorimeter I’. Our method of correcting is based on the Groom formula. As the 

response of the hadron cdorimeter for iron is low, we multiply by the reciprocal e/?r where 

this ratio is evaluated for each tower in the LEG0 plot at the measured energy found in 

that tower. This procedure results in a reconstructed mass that is restored to 97% of the 

generated mass (see Fig. 7). The mass resolution is now 2.8% and the energy resolution is 

2.2% (see Fig. 8). Table 1 shows the mass and energy resolutions presented in this report 

for comparison purposes. Clearly, no major differences in the response of an iron and lead 

calorimeter are observed in this study. 
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TABLE I. 

Di-jet mass resolution and jet energy resolution 

case m(Rec)/m(Gen) sigma(m)/m sigma(E)/E 
Z’ 

ideal (lead) 0.968 0.022 0.010 
smearing (lead) 0.967 0.025 0.019 
ideal (iron) 0.915 0.025 0.019 
smearing (iron) 0.913 0.030 0.028 
smearing (imj e/h-corrected 0.966 0.028 0.022 
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Figure 1: The ratio of the reconstructed mass to the generated mass for a 10 TeV Z’. 

Our simulation is for an ideal (i.e. no energy resolution) lead hadron calorimeter. The mass 

is reconstructed in a cone of radius R = 0.6 = Jm. 
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Figure 2: The fractional energy error E’-‘ur~~~~,~~~~~~e~i” for a cone of radius 

R = 0.6 for an ideal lead hadron calorimeter. 
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Figure 3: The ratio of the reconstucted mass to the generated mass for a 10 TeV Z’. 

Our simulation is for a lead hadmu calorimeter. We have used an energy smearing dE = 

70%x& $2%. 
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Figure 5: The ratio of the reconstucted mass to the generated mass for a 10 TeV 2’. 

Our simualtion is for an iron calorimeter ( ‘;f- = 1.25). We have used an energy smearing dE 

= 70%x6 CII 2% $ b(e/h). 
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Figure ‘I: The ratio of the reconstucted mass to the generated mass for a 10 TeV 2’. 

Our simulation is for a* iron calorimeter ( 2 = 1.25). The energy smearing used was dE = 

70%& @ b(e/h). We have corrected the response by multiplying the energy measured in 

each tower by 5 (Groom’s formula). 
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= 7o%a $ 2% $ b(e/h). We have corrected the response by multiplying the energy 

measured in each tower by i (Groom’s formula). 


